Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(3): 399-413, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428414

RESUMO

Degenerative bone disorders have a significant impact on global health, and regeneration of articular cartilage remains a challenge. Existing cell therapies using mesenchymal stromal cells (MSCs) have shown limited efficacy, highlighting the necessity for alternative stem cell sources. Here, we have identified and characterized MSX1+ mesenchymal progenitor cells in the developing limb bud with remarkable osteochondral-regenerative and microenvironment-adaptive capabilities. Single-cell sequencing further revealed the presence of two major cell compositions within the MSX1+ cells, where a distinct PDGFRAlow subset retained the strongest osteochondral competency and could efficiently regenerate articular cartilage in vivo. Furthermore, a strategy was developed to generate MSX1+PDGFRAlow limb mesenchyme-like (LML) cells from human pluripotent stem cells that closely resembled their mouse counterparts, which were bipotential in vitro and could directly regenerate damaged cartilage in a mouse injury model. Together, our results indicated that MSX1+PDGFRAlow LML cells might be a prominent stem cell source for human cartilage regeneration.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células-Tronco , Terapia Baseada em Transplante de Células e Tecidos , Mesoderma , Transplante de Células-Tronco Mesenquimais/métodos , Diferenciação Celular , Fator de Transcrição MSX1/genética
2.
Sci Bull (Beijing) ; 67(11): 1154-1169, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545982

RESUMO

The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.


Assuntos
Células-Tronco Mesenquimais , Dente , Camundongos , Animais , Odontogênese/genética , Germe de Dente , Epitélio
3.
Cell Rep ; 41(10): 111737, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476878

RESUMO

Mammalian teeth develop from the inductive epithelial-mesenchymal interaction, an important mechanism shared by many organs. The cellular basis for such interaction remains elusive. Here, we generate a dual-fluorescence model to track and analyze dental cells from embryonic to postnatal stages, in which Pitx2+ epithelium and Msx1+ mesenchyme are sufficient for tooth reconstitution. Single-cell RNA sequencing and spatial mapping further revealed critical cellular dynamics during molar development, where tooth germs are organized by Msx1+Sdc1+ dental papilla and surrounding dental niche. Surprisingly, niche cells are more efficient in tooth reconstitution and can directly regenerate papilla cells through interaction with dental epithelium. Finally, from the dental niche, we identify a group of previously unappreciated migratory Msx1+ Sox9+ cells as the potential cell origin for dental papilla. Our results indicate that the dental niche cells directly contribute to tooth organogenesis and provide critical insights into the essential cell composition for tooth engineering.


Assuntos
Dente , Dente/crescimento & desenvolvimento
4.
Sci Adv ; 6(15): eaay1514, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284993

RESUMO

Dental pulp is critical to maintain the vitality of a tooth. Regeneration of pulpo-dentinal complex is of great interest to treat pulpitis and pulp necrosis. In this study, through three-dimensional spheroid culture, a group of unique multipotent stem cells were identified from mouse dental papilla called multipotent dental pulp regenerative stem cells (MDPSCs). MDPSCs exhibited enhanced osteogenic/odontogenic differentiation capabilities and could form regenerative dentin and neurovascular-like structures that mimicked the native teeth in vivo. Further analysis revealed that CD24a was the bona fide marker for MDPSCs, and their expansion was highly dependent on the expression of a key transcriptional factor, Sp7. Last, CD24a+ cells could be detected in primary dental papilla in mice and human, suggesting that MDPSCs resided in their native niches. Together, our study has identified a previously unidentified group of multipotent pulp regenerative stem cells with defined molecular markers for the potential treatment of pulpitis and pulp necrosis.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Antígeno CD24/metabolismo , Criança , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Transcriptoma
5.
3 Biotech ; 8(5): 258, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29765816

RESUMO

Lignite humic acids (LHAs) were sequentially separated from lignite with aqueous NaOH and HCl and biotreated by an isolated fungus WF8. The liquid product (LP), residues (RS) and LHAs were analyzed using a Fourier transform infrared spectrometer (FTIR) and a proton nuclear magnetic resonance (1H NMR). Three main enzymes in WF8 (i.e., lignin peroxidase, manganese peroxidase and laccase) were also measured and analyzed with and without LHAs. The results show that LHAs can induce the ligninolytic enzymes. The oxidation and hydrogenation reactions proceeded to some extent, aromaticity in LHAs and carboxyl in LP decreased, and LHAs were converted into simpler LP via biochemical reactions by WF8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...